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We consider the penetration of a solid medium by a foreign body which is large enough 
for frictional heating to melt the medium and maintain a thin liquid layer ahead of 
the body. This study is motivated by the possibility of the Earth’s core having been 
formed by liquid iron diapirs melting their way through the solid, deformable mantle. 
Our principal results are the existence of a critical size for the body for the motion 
to be maintained under gravity and the ease with which an immiscible liquid body 
can penetrate at constant velocity compared to a solid one. 

1. Introduction 
Viscous heating is believed to play an important role in a variety of geophysical 

applications. For example, it  is recognized that the Earth’s mantle exhibits a viscous 
fluid behaviour on geological timescales. Thermal convection in the mantle drives 
plate tectonics and continental drift and the importance of viscous dissipation in this 
process was demonstrated by Turcotte et al. (1974)’ and Hewitt, McKenzie & Weiss 
(1975). 

If viscous heating occurs but in addition the fluid viscosity decreases exponentially 
with temperature, thermal runaway can occur when a constant stress is applied 
(Gruntfest 1963). The viscosity of the Earth’s mantle does have such a temperature 
dependence because the solid-state creep mechanisms responsible for the fluid 
behaviour are thermally activated. A number of authors have suggested that thermal 
runaway can occur in the Earth’s mantle and that it is responsible for a substantial 
fraction of the observed surface volcanism (Nitsan 1973; Yuen & Schubert 1979; 
Melosh & Ebel 1979). 

The aspect of thermal runaway with which we will be concerned is most easily 
illustrated by considering a Couette flow in which .a plate y = his moved by a constant 
force parallel to a stationary plate y = -h. The space -h  < y < h is filled with a 
Newtonian liquid whose viscosity is 

where T is measured from some suitable reference temperature. If a steady flow exists, 
the liquid shear ,uau/ay = T,, is a constant so that the energy equation is 

p = pLo e-bT, (1.1) 

where k is the thermal conductivity, assumed constant. When the plates are 
isothermal so that T = 0 at  y = 

e-ibT = c cosh--, 

h, we find 

(1.3) 
hY 
ch 
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where the real constant c satisfies c coshhlc = 1 and h2 = pri h2/2k,uo. Hence there 
is no solution if 

pri h2/2kpo > 0.439. (1.4) 

When this inequality is satisfied, the unsteady problem in which aT/at appears on 
the right-hand side of (1 .2)  exhibits finite-time blow-up, as in the theory of 
combustion. Thus an unbounded conversion of mechanical to thermal energy can 
occur, even though there is heat loss through the channel walls, and this is one form 
of thermal runaway. If the walls were thermally insulated the runaway would be more 
dramatic, with no steady solution existing for any value of ro. Equally if ,u was 
bounded away from zero or if the flow was driven by a prescribed pressure gradient, 
thermal runaway could not occur (Ockendon 1979). 

The mathematical and numerical analysis of flows in which the viscosity is given 
by (1.1) can become very difficult (Morris 1982) but the idea of relating diffusion 
problems with such nonlinearities to ‘free boundary’ problems, in which the field 
equations have piecewise constant coefficients, has been used in biological applications 
(Rinzel & Keller 1973) and combustion theory (Lacey 1981). The simple models 
proposed in this paper replace fluid flows in which the viscosity varies rapidly by the 
motion of a medium which melts at some prescribed temperature T, from a perfectly 
rigid solid to a constant-viscosity liquid. Thus the Couette flow problem with 
isothermal walls at T = 0 has a steady solution in which the liquid occupies I yI < s 
and the solid s < I y I < h as long as the energy equation 

a2T r2 
k - + ? = O ,  T > T , > O ,  I Y ~ < S ,  (1.5a) 

aY2 Po 

has a solution satisfying 
aT -T, 

T = T , ,  -=- on y = s, 
ay  h-s 

(1.5b) 

assuming k is also the solid conductivity. It is easy to see that there are two solutions 
with 0 < s < h as long as 

(1.6) 

and we now interpret thermal runaway as occurring if the shear, and hence the 
dissipation, is strong enough to permit the existence of a liquid region, i.e. if (1.6) 
holds. The mathematical advantage of this model over (1.2) is that as ro+ 00, flows 
are possible in which s 4 h. The occurrence of runaway when the liquid is confined 
to a thin region allows lubrication theory to be employed successfully even when 
the geometry is more complicated, and our subsequent analysis will rely heavily on 
this fact. 

Our aim in this paper is to consider whether thermal runaway, or a modified version 
of this phenomenon in which a large amount of heat is produced to change the phase 
but where the temperature does not significantly increase, can be the mechanism by 
which a solid or an immiscible fluid can melt its way through a host medium. The 
driving force is the differential buoyancy of the foreign body and the host medium. 
In the example (1.5) any imposed shear ro is sufficient to permit motion if T, is 
sufficiently small. However, for a buoyancy-driven finite body we will see that, with 
T, = 0 for convenience, i t  is only if this buoyancy force is sufficiently large that the 
viscous dissipation in a thin film of molten host medium will be sufficient to provide 
enough heat to melt a pathway through the medium. 

T; h2/T, kpo > 4, 
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One possible application of this mechanism is to the problem of core formation. 
Iron and silicates condense at nearly the same temperature so that strongly 
heterogeneous accretion is highly implausible (Grossman & Larimer 1974). Thus, 
accepting near-homogeneous accretion, a mechanism for the later segregation of the 
core must be provided. Studies of the systematics of the lead isotope system indicate 
that the core formed within 500000 years after the Earth’s formation, and is likely 
to have formed synchronously (Oversby & Ringwood 1971). Estimates of the energy 
released by the core formation indicate that it is sufficient to heat the entire Earth 
by about 2000 K. One explanation of core formation is that the energy of accretion 
and that of formation melted the entire Earth. However, most geochemists object to 
this hypothesis because the Earth’s mantle is not fractionated and still contains 
significant concentrations of rare gases that should have been lost to the atmosphere 
had the entire Earth ever been molten (Ringwood 1975). 

An alternative explanation of core segregation is the migration of bodies (diapirs) 
of liquid iron through the solid mantle of the Earth. During accretion the early Earth 
was probably covered with a magma ocean with a thickness of a few hundred 
kilometres (Hofmeister 1983). This magma ocean would have refined the accrescent 
material, with the gases forming the atmosphere and the iron sinking to the bottom. 
Indeed Elsasser (1963) assumed that a layer of liquid iron formed near the Earth’s 
surface and postulated a Rayleigh-Taylor instability to explain the formation of large 
sinking diapirs of liquid iron. This mechanism has also been considered by Tozer 
(1965), Stevenson (1981), and Andrews (1982), and the solid mantle is assumed to 
deform by the same solid-state creep processes associated with mantle convection. 
This mechanism could explain the initial formation and migration of liquid iron 
diapirs but a simple Stokes flow calculation shows that an iron body with a diameter 
of 100 m would only fall 100 km in 4 x los years with a mantle viscosity of loa1 poise. 
However, we will show that large iron diapirs may generate sufficient energy through 
viscous dissipation to melt a path through the mantle at a much greater velocity than 
this. 

Another possible application of this thermal runaway model is to magma migration. 
Magma must ascend from depths of 100-200 km or greater where conditions are 
molten, to the surface of the Earth where volcanic flows and volcanoes are observed. 
Mechanisms for magma migration have been reviewed by Spera (1980) and by 
Turcotte (1982). The role of the diapirs in magma migration has been discussed by 
Marsh (1978, 1982) and by Marsh & Kantha (1978). These authors have all studied 
the movement of liquid diapirs of prescribed shape due to the solid-state creep of the 
rock through which they pass. An alternative mechanism proposed here is that the 
heat produced by viscous dissipation can melt a path through the solid mantle. A 
similar mechanism was proposed by Rice (1971) to explain bulk slip, and his view 
is that viscous dissipation in natural convection rarely can be neglected. 

In $2 of this paper we will consider the penetration of solid host rock by a solid 
foreign body and in $3 will consider the more realistic situation in which a liquid body 
melts its way through the rock. The former is less relevant geologically but is easier 
to describe and the results are useful for $3. Before attempting to write down any 
mathematical model we consider the orders of magnitude needed for the size and 
velocity of the foreign body if it is to be able to melt its way through relatively cool 
host rock under the action of viscous dissipation. We assume that the molten host 
rock is confined to a thin layer around the upstream (leading) surface of the foreign 
body and, of course, the wake. We also assume that: (i) the wake, comprising molten 
host rock just above the melting temperature, exerts negligible stress on the foreign 

. 
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body compared to the upstream lubrication forces; and (ii) real-fluid effects such as 
variable material properties, variable melting temperature, density changes due to 
melting, regelation, and surface tension are negligible. Then for a rigid foreign body 
we have a generalization of a problem considered by Emmons (1954). If the body 
is a sphere of radius a moving with a typical velocity Uo under the action of a constant 
force F, and So < a is a typical thickness of the layer of molten host rock, then the 
lubrication velocity tangential to the foreign body is O( Uo a/So) and the corresponding 
pressure in the layer is O(p0 U0a2/Si). Hence neglecting the wake and side-wall effects 

The melting of the host rock occurs as a result of heat conduction from the molten 
layer. In  the simplest case we assume that the host rock is at, or just below, its melting 
temperature (taken to be zero) and that the penetrating body is at a temperature 
T, above this host rock temperature. Then with no dissipation present 

where po and L are the density and latent heat per unit mass of the host rock. Hence, 

However the temperature rise due to viscous dissipation in the layer must be 
comparable with T, if it is to be possible for there to be no total heat loss from 
the foreign body. Hence 

a2p0 Ui - kT, S;, (1.10) 

and, from (1.9), we have the obvious force balance F - poLa2. For a thermally 
insulated foreign body the temperature rise in the molten rock layer will be of order 
,uo q a 2 / k S i  and arbitrary values of Uo and So are possible, provided Uo/Si - pL/poa2. 
Thermal equilibrium can be maintained in the absence of any heat sources in the body, 
the average heat flow per unit area into the rock from thermal dissipation yo a2/Si 
balancing the flux pLUo which is needed to maintain melting. 

When the body rises or falls buoyantly, with a density difference 1 p1 -po I, we thus 
see that a constant-velocity motion can only occur when the radius a - po L/g 1 p1 -po I ; 
larger or smaller bodies may be expected to heat or cool indefinitely. For the case 
of a rigid sphere of iron migrating through the mantle po - 3.3, pl-po - 4 and 
L - 4 x loB in c.g.s. units (Turcotte k Schubert 1982) so that the radius a - 30 km. 

The remainder of this paper will be concerned with the quantitative analysis of 
this problem under assumptions (i)-(ii) and its extension to the case of immiscible 
liquid bodies, where the extra degree of freedom will be found to permit runaway 
to occur more generally. 

2. Penetration by a rigid sphere 
2.1. Steady motion 

Consider first the problem of a rigid sphere moving buoyantly by melting its way 
through a host rock whose ambient temperature T, is below its melting temperature 
zero. Let the sphere have radius a, aprescribed constant temperature T, > 0, and take 
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RQURE 1. Motion of a rigid sphere. 

axes fixed in the sphere moving with constant velocity in the z direction relative to 
the host rock (figure 1). 

Now from our earlier discussion a heat balance will only be maintained in the 
absence of heat sources and sinks in the sphere if its velocity is Uo U,  where U = O( 1) 
and, from (1.8), ( l . l O ) ,  Uo is defined by 

Moreover we have seen that a typical molten-layer thickness is given by 

so that we can use hydrodynamic lubrication theory in the layer if So 4 a and also 
the reduced Reynolds number 

We have neglected density changes during melting and so the only thermal 
convection which can occur is as a result of the lubrication velocity Uo a/$,. This effect 
is negligible compared to conduction acrosa the layer if the specific heat c is such that 
the Stefan number is small, that is 

C T ,  -4 1, L (2.4) 

which is equivalent to the PBclet number, cpo U06,/k,  being small. For the case of 
iron migrating through the mantle, when T, - 100 K and 

a - 3 x lo6, k - 4 x lo5, p0 - 1 ,  c - lo7 

in c.g.s. units (Turcotte & Schubert 1982), we find 6, = (kpo T,/pg2)! - 40 cm, so the 
relevant small parameters are 
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Moreover, the large ratio of the velocity Uo to that predicted by Stokes flow through 
a mantle of viscosity p, N 1021 is 

0 ~ ~ @ 3 )  = 105. 

The most important condition for our mathematical model is the melting condition 

aT 
an 

k -  = -po UU, L' COS$, 

where n is measured normal to the sphere and 4 is the polar angle. We have written 
L' instead of L in (2.6) to account for the host medium being a t  some ambient 
temperature T, < 0. The PBclet number in the host rock is pocaUo/k ( N  0(108) for 
the case (2.5)) and, if it is large, the host rock will adjust to its melting temperature 
in a thermal boundary layer whose thickness -4 a. The resulting heat flow out of the 
molten layer can then be accounted for by writing L' = L-cT,. 

Within the molten layer we define local coordinates (s,n) with n normal to the 
surface of the sphere and s tangential in the (z,n)-plane, where n is ma,de non- 
dimensional with So defined by (2.2) and s with a so that s = $. If (u, w) are 
corresponding local velocity components, made non-dimensional with aU0/6, and Uo 
respectively where Uo is defined by (2. l ) ,  the boundary conditions on the molten layer 
are 

u = v = O ,  T = l  (n=O),  (2.7) 

v=-ucos$ ,  u = o  - , (2.8) 

(2.9) 

(''1 (n = a($)). 
aT 
an 

T=0, -= -UCOS$ 

Here T has been made non-dimensional with To, and we have again assumed no 
density change on the melting boundary. Following lubrication theory, we neglect 
terms of O(So/a)  and the viscous-flow equations in the molten layer reduce to 

together with the continuity equation, in spherical polars, 

av 
(u sin $) +- = 0, 

i a  -- 
sin $ a$ an 

(2.10) 

(2.11) 

where p is the pressure, including hydrostatic pressure, made dimensionless with 
p Uo 

The energy equation in the molten layer in this approximation reduces to 

(2.12) 

Integrating equation (2.10), u = !p(n-S)ap/a$. From (2.11), using boundary con- 
ditions (2.7), (2.8) and the condition that ap/a$ is bounded at $ = 0, 

aP 
a$ 

S3- = -6U sin$. (2.13) 
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Integrating equation (2.12), 

and applying the Stefan condition (2.9) on n = S, 

ucos$ = $43 2 1  +- 
6 '  

Finally eliminating tlp/a# from (2.13), 6 is given by 

USS cos$-S2-~u2 sin2$ = 0. 

307 

(2.14) 

(2.15) 

(2.16) 

This cubic for S always has a positive root for U > 0, 0 < $ < in, and S - 1/U as 
$ + O ;  6 - sec $ / U  as $+in. The existence of this root for 6 implies that thermal 
runaway can occur in the sense discussed in the introduction. 

If the sphere has a high thermal conductivity, its temperature will remain constant 
in the absence of internal heat sources or sinks when the net heat flux across its surface 
is zero. Neglecting heat losses into the wake from the lower half of the sphere, this 
condition is 

Jo' (an-o sin$ d$ = 0. 

Using (2.14)-(2.16) this condition may be reduced to 

(2.17) 

where S($) is given by (2.16). This expression determines the value of U N 1.22 for 
which a steady motion with constant temperature is possible. 

For the sphere velocity to remain constant the total forces on the sphere must also 
be in equilibrium. If we assume that there is no force on the lower half of the sphere 
due to the wake, then the buoyancy force must balance the pressure force integrated 
over the upper hemisphere, so that 

(2.18) 

where p1 is the density of the sphere, which is less than po if g is in the negative z 
direction. Defining 

IP1-PoIag 
Po L' 

Y =  (2.19) 

and using (2.13), equation (2.18) may be written 

1; Ji: z d $  cos$' sin$' dq5' = -, -Y 
3 u  

where it has been assumed that p = 0 at $ = in, where the lubrication layer meets 
the wake. This simplifies to 

(2.20) 
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and, using (2.16) and (2.1?), y = f, which is just the global energy balance for the 
sphere. 

A steady motion in mechanical and thermal equilibrium is therefore possible if U 
and y take specific values. This implies that the velocity if proportional to T! and 
the radius of the sphere is prescribed, with a value of about 20 km in the case (2.5). 

2.2. Unsteady motion 

We may speculate that, if y > f, the sphere will accelerate and its temperahre will 
increase without bound, while if y < f i t  will be brought to rest by solidification of 
the molten layer. Rather than carry out a full unsteady analysis, we assume that 
the timescales associated with the mechanical inertia of the sphere and with the phase 
change are short compared with that of the heat capacity of the sphere. The sphere 
velocity and temperature are now U, U(t)  and T, 6(t)  respectively, where Uo is defined 
by (2.1), and time only enters as a parameter in the lubrication equations. Hence 
(2.16) becomes 

USs c0s#-0S2-flY sin2# = 0 (2.21) 

and, in the absence of mechanical inertia, the force balance (2.20) is 

y = 9 U j r  (T) sin# d$. 
(2.22) 

If we denote the heat capacity of the sphere by a,  the heat balance (2.17) is now 

dc9 
dt 

u- = $u(y-:). (2.23) 

Equations (2.22) and (2.23) may be rescaled conveniently by the transformation 
6 = &8(#), U = @u, and B only appears explicitly in the heat-balance equation 

d 
dt 

4u-(&) = $.(y-f). (2.24) 

Hence 8 is monotonic, increasing or decreasing to  zero in finite time depending on 
sgn ( y - f ) ,  and the steady motion with y = f will not be stable to small changes in y .  
Moreover this model gives no terminal velocity as might have been expected by 
analogy with other motions in resistive media. 

When y = f, 0 can take any constant value and UB-f is the steady velocity defined 
by (2.16) and (2.17). All the possible steady motions are parametrized by the sphere 
temperature, in accordance with our original non-dimensionalization. 

3. Penetration by an immiscible liquid body 
3.1. General unsteady motion 

Changing the shape of the rigid body from a sphere only alters constants in the 
equations and leads to a result similar to (2.24), namely that only one critical value 
of a size parameter y is possible for steady motion. However, when we consider the 
penetrating region to be an immiscible liquid body with negligible surface tension, 
the predictions of the model are significantly different. 

We again assume the Stefan number is small, where u3 is now the volume of the 
body and a is large compared to So. The velocity induced in the body is O( U,u/S,) 
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FIGURE 2. Motion of an immiscible liquid body. 

and we also assume the dynamic viscosity p1 of the body is such that p1 gaso % Uopl 
and g# % a q ,  so that the pressure in the drop is hydrostatic. This is consistent with 
our assumptions about orders of magnitude in $2 if pl - yo. However,‘ the fact that 
the pressure in the body is hydrostatic means we will be able to impose a local force 
balance on the molten layer, which will be crucial in calculating its shape. In  addition 
to continuity of pressure at the body surface, we will also impose continuity of normal 
velocity and zero shear stress since pressure forces dominate shear forces in 
lubrication theory. 

Assuming the body density p1 - po, So will be such that the hydrostatic and 
lubrication pressures are comparable, so po ga N po Uo a2/S: in addition to (2.4), and 
we define y as before by (2.19). 

We describe an axisymmetric body as in figure 2 by z = f ( r ,  t )  with respect to axes 
fixed in space; the base of the body is assumed planar at  z = F(t ) ,  with the wake in 
z < F(t) .  Local coordinates (8 ,  n) are chosen with moving origin in the body surface 
at a typical point ( r , f )  with s tangential and n normal to the surface and a typical 
velocity Uo is defined from (2.1) as before. 

The lubrication problem corresponding to (2.7), (2.8) and (2.9) becomes 

(3.1) 
au 

v = o = -  T =  O ( t ) ,  p = yf (n = 0 ) ;  
an’ 

together with 

and 

ap a Z u  ap i a  ar _ -  -- - = 0,  - - ( r u ) + -  = 0 
as an2’ an r as an 

(3.5) 

Note that in steady conditions af/at is constant, and that in the notation of the 
problem for the sphere r = sin$, with ar/as = cos$ and af/as = sin$. 

Integrating equations (3.4) and (3.5) gives 
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and 

Applying the Stefan condition (3.3) 

(3.7) 

In the case of the rigid sphere, (3.6) simplified to (2.13) and explicitly gave the 
pressure gradient; (3.7) is a statement equivalent to (2.15). However for an unsteady 
liquid body it is no longer possible to eliminate S or f between these two equations. 
They may however be simplified by an appropriate scaling similar to that used in 
deriving (2.24) and we make the transformation 

so that 

and 

(3.9) 

Three global conservation laws must be applied to the body ; we have already chosen 
a so that its volume is unity and we assume that its non-dimensional constant 
momentum in the z direction is U*. We recall that the immiscible liquid body is at 
hydrostatic pressure and is assumed to have a high thermal conductivity. Then from 
conservation of volume 

(3.11) 

where 2xX(f) is the area of the base of the body z = F ( f ) .  From conservation of 
momentum 

U* 

so that 

where 

From conservation of heat 

3.2. Steady motion 

(3.12) 

(3.13) 

An exact solution of these equations may be found for a body of constant shape in 
the form 

f =  uz-g(z), e =  1. (3.14) 
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FIGURE 3. Velocity and size parameters for steady motion. 

Equation (3.9) may be integrated, and together with (3.10) and the condition that 
a3 af/ax is bounded at x = 0, gives 

V4(l -%xh)' = h( l  +2xh2), (3.15) 

where h = dg/dx. Equations (3.11) and (3.12) are now identical and (3.13) is also 
satisfied if X ( t )  = X o  = y/2x and 

1 
xhdx = -. 6'" 2x 

(3.16) 

Equations (3.15) describes the shape of the body in this steady situation and its nose 
radius of curvature is 04. Such shape will only be possible if condition (3.16) is also 
satisfied, that is there is a functional relation between y the size parameter and .!7 
the non-dimensional momentum. 

From (3.15) it is easy to see that d(hx)/dx > 0 for x, h > 0 and that hx - 4/3y 
as x++ a. Hence hx is a monotone increasing function of x and for any fixed y the 
left-hand side of (3.16) tends to 

as B+m _ _ - _  4 Y  2 
3y2x 3x 

- 

and zero as g+O. Hence, by continuity, there is at least one value of osatisfying 
(3.16) for any y. Moreover, as y+O or m, x = O(y) ,  h = 0(y2)  so, from (3.15), 
g4 - y-5  as y + O  and g4 - y-e  as y+ 00. The relation between o and y is shown 
in figure 3 ; we can again think of the body temperature as parametrizing points on 
this curve. Unlike the situation for a solid body, there is a continuum of liquid body 
shapes depending on their size y and typical profiles are shown in figure 4. 

3.3. Unsteady motion 
We may regard (3.10) as an algebraic equation for band substitute into (3.9) to obtain 
a quasilinear hyperbolic partial differential equation for f, one of its characteristics 
being that f = const; x = 0 is a singular line on which the characteristics coincide. 
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FIGURE 4. Liquid body shapes. 

Hence we may expect that  local wavelike solutions are possible away from the nose 
of the body but even the linear stability analysis of the steady motions derived above 
is very complicated. However, we note that a body with prescribed volume containing 
heat sources or sinks could move steadily, conserving mass and momentum, with f 
given by (3.14) and 

1 
xhdx = -, JOX0 2rl 

where, again, h = dg/dx. However, from (3.13) its temperature would satisfy 

a d8 - 
--= an dt U ( & - X o ) ,  (3.17) 

so that a slender body with X, < y/2z would require a heat sink and a blunt body 
would require a heat source to maintain the motion. We note from (3.15) that, with 
y fixed, an increase in corresponds to an  increase in h and hence, from (3.16), a 
decrease in X,, so that the more slender bodies have greater velocities. 

4. Conclusion 
We have been able to carry out a fairly complete analysis of the motion of a solid 

body melting its way through a host medium. Under the action of a constant force, 
a continuum of steady velocities and temperatures is possible with the fourth power 
of the velocity being proportional to  the cube of the temperature, but these steady 
conditions can only be attained under the action of gravity if the solid has precisely 
the correct size. 

The problem of penetration by an immiscible liquid body is more complicated, 
although it seems that steady motion is possible for bodies with a range of sizes, all 
of which are of the same order of magnitude and each with its own velocity and 
temperature. Moreover the more slender the diapir the more rapidly it penetrates, 
which is the opposite result to  that  obtained from Stokes law, a conclusion implicit 
in the analysis of Morris (1982). Whether these motions are stable or not can probably 
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be decided only by numerical integration of the hyperbolic system (3.9)’ (3.10), which 
is singular at the nose x = 0. 

From this analysis we argue that long, thin, liquid iron bodies can melt their way 
to the core. Each diapir will have a wake of molten mantle rock which is cooled by 
the surrounding rock and eventually solidifies, the heat being lost at the Earth’s 
surface. This is a heat-pipe mechanism that transports the heat of core formation to 
the Earth’s surface without melting the entire mantle. 

Our analysis in f 3 may also be relevant for the upward migration of magma diapirs, 
for which the viscosity is comparable to that of liquid iron. However, the density 
difference is smaller than that for liquid iron so there is less energy available for the 
viscous dissipation process. Also, some modification to our assumptions about the 
wake are needed to take account of the feeder pipe which is known to occur (Ribe 
1983). 

Finally, there is some similarity between the problem described in $2 and that of 
the rise of hot mantle diapirs through the mantle. Here the viscosity variation is much 
smaller but its strong temperature dependence has been suggested as a mechanism 
for the formation of thin thermal plumes (Loper & Stacey 1983). 

This work was supported in part by the Division of Earth Sciences, National 
Science Foundation, under grant EAR 81 -21053. 
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